CN
EN
刘晓华
电话:62773772 (Office)
传真:62770544 (Fax)
E-mail:lxh@tsinghua.edu.cn

刘晓华    博士生导师

单位:清华大学建筑学院建筑技术科学系

电话:62773772 (Office),62770544 (Fax)

E-mail:lxh@tsinghua.edu.cn


清华大学建筑学院博士生导师,入选国家高层次人才支持计划,国家重点研发计划项目负责人。兼任中国制冷学会理事、全国暖通空调分委会理事、中国建筑节能协会光储直柔专委会副秘书长,担任国际SCI期刊Journal of Building Engineering副主编和多个国际国内期刊编委。长期从事建筑节能低碳与能源高效利用方面的研究,对光储直柔建筑、建筑-电力交互、高效空调系统和大空间建筑节能等方向开展了深入研究。发表SCI检索论文逾200篇,以第一作者出版专著7部,获授权发明专利40余项,连续入选Elsevier中国高被引学者、全球前2%顶尖科学家(终身科学影响力榜单)。主持国家重点研发计划项目1/课题2项、国家自然基金项目4项、全国优博基金等多项科研项目。研究成果在交通枢纽建筑(青岛胶东机场、成都天府机场、西安咸阳机场)、北京冬奥场馆(“冰丝带”、“冰立方”)等标志性建筑中应用并取得显著节能降碳效果。研究荣获国家技术发明奖二等奖1项、北京市科技一等奖等省部/学会级科技奖励一等奖5项、二等奖3项。

 

研究和教学方向

光储直柔建筑新型能源系统

高效空调系统与高大空间建筑节能

空气热湿传递与湿度控制


教育简历

1998-2002  清华大学建筑技术科学系,本科生

2002-2007  清华大学建筑技术科学系,博士研究生


专业履历

2007-2010  清华大学建筑技术科学系,讲师

2011-2015  清华大学建筑技术科学系,副教授

2013-至今  清华大学建筑技术科学系,博士生导师

2016-至今  清华大学建筑技术科学系,教授


社会兼职

中国制冷学会理事

全国暖通空调分委会理事

中国建筑节能协会光储直柔专委会副秘书长


教材和论著

[1]    刘晓华, 张涛, 童亦斌, 郝斌, 江亿, 等著. 光储直柔. 北京: 中国建筑工业出版社. 2025

[2]    Jiang Y, Hu S, Liu XH, Zhang T, Wei QP. Decarbonize Public and Commercial Buildings. China Building Energy and Emission Yearbook 2022. Berlin: Springer Press, 2022

[3]    刘晓华, 张涛, 戎向阳, . 交通场站建筑热湿环境营造. 北京: 中国建筑工业出版社. 2019

[4]    刘晓华, 张涛, 周翔, 唐海达. 辐射供冷. 北京: 中国建筑工业出版社. 2019

[5]    刘晓华, 谢晓云, 张涛, 江亿. 建筑热湿环境营造过程的热学原理. 北京: 中国建筑工业出版社. 2016

[6]    Liu Xiaohua, Jiang Yi, Zhang Tao. Temperature and Humidity Independent Control (THIC) of Air-conditioning System. Berlin: Springer Press, 2014

[7]    刘晓华,李震,张涛. 《溶液除湿》. 中国建筑工业出版社, 2014

[8]    刘晓华,江亿,张涛.《温湿度独立控制空调系统(第二版)》. 中国建筑工业出版社, 2013


部分期刊论文(近三年)

[1]    刘晓华, 张涛, 刘效辰, 张吉, 江亿. 电网友好型建筑构建路径探索. 新型电力系统, 2024, 2(1):13-25

[2]    刘晓华, 张涛, 刘效辰, 江亿. 面向双碳目标的建筑能源系统再认识. 力学学报, 2023, 55(3): 699-709

[3]    刘晓华, 张涛, 刘效辰. 如何描述建筑在新型电力系统中的基本特征?——现状与展望. 暖通空调, 2023, 53(1):1-10,124.

[4]    刘晓华, 张涛, 刘效辰, 江亿. “光储直柔”建筑新型能源系统发展现状与研究展望. 暖通空调, 2022, 52(8):1-9.

[5]    Pattern extraction and structured characterization for electricity consumption profiles in different types of buildings. Energy and Buildings, 336 (2025) 115598

[6]    Application potential of rooftop photovoltaics (PV) in elevated metro station for a low-carbon future: Characteristic analysis and strategies for supply-demand mismatch. Renewable Energy, 238 (2025) 121983

[7]    Techno-economic performance of different DC power distribution networks in official buildings based on a real-time analysis method. Energy and Buildings325 (2024) 114996

[8]    Flexible energy utilization potential of demand response oriented photovoltaic direct-driven air-conditioning system with energy storage. Energy and Buildings, 323 (2024) 114818

[9]    Joint optimization for temperature and humidity independent control system based on multi-agent reinforcement learning with collaborative mechanisms. Applied Energy, 375 (2024) 123968

[10] Energy and exergy analysis for advanced air-conditioning: Comparative evaluation of electrodialysis and aerodynamic thermal methods in liquid-desiccant reconcentration. Desalination, 583 (2024) 117721

[11] Quantifying the energy flexibility potential of a centralized air-conditioning system: A field test study of hub airports. Energy, 298 (2024) 131313

[12] Dimensionless correlations of indoor thermal stratification in a non-enclosed large-space building under heating and cooling conditions. Building and Environment, 254 (2024) 111387

[13] Quantifying the energy flexibility potential of ground vehicles in an airport towards electrification: A real behavior data-based study. Sustainable Cities and Society, 105 (2024) 105331

[14] Can distributed photovoltaic-battery systems power buildings with favorable matching performance and techno-economic feasibility? Energy Conversion and Management, 306 (2024) 118260

[15] How to Achieve Energy Efficiency in Buildings without Com-promising Indoor Air Quality: A Case Study on Enthalpy Exchangers. Science China Technological Sciences, 2024, 67(9): 2648-2658

[16] Zhiyao Ma, Xiaomin Chang, Tao Zhang, Xiaohua Liu*, Bowen Guan. On-site measurement and optimization of energy efficiency of the cascading desiccant wheel deep dehumidification in the lithium-ion battery manufacturing factory. Energy and Buildings, 304 (2024) 113833

[17] Investigation of energy recovery performance and frost risk of membrane enthalpy exchanger applied in cold climates. Energy, 282 (2023) 128894

[18] Effectiveness of temperature and humidity treatment processes: unified expression and thermodynamic analysis. Applied Thermal Engineering, 234 (2023) 121266

[19] Feature extraction and an interpretable hierarchical model for annual hourly electricity consumption profile of commercial buildings in China. Energy Conversion and Management, 291 (2023) 117244

[20] Charging private electric vehicles solely by photovoltaics: A battery-free direct-current microgrid with distributed charging strategy. Applied Energy, (2023) 121058

[21] Building-centric investigation into electric vehicle behavior: A survey-based simulation method for charging system design. Energy, 271 (2023) 127010

[22] PEDF (photovoltaics, energy storage, direct current, flexibility), a power distribution system of buildings for grid decarbonization: definition, technology review, and application. CSEE Journal of Power and Energy Systems, 2023, 9(3):829-845

——关注我们——
联系我们
电话:010-62783496
邮箱:jzxy@tsinghua.edu.cn
地址:北京市海淀区清华大学建筑学院 100084
© 2024 版权所有 清华大学建筑学院